VULNERABLE POPULATION Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV-AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and microbiological contaminants call the EPA Safe Drinking Water Hotline at 1-800-426-4791. # SOURCE WATER ASSESSMENT Based on the information currently available on the hydrogeologic settings and the adjacent land uses that are in the specified proximity of the drinking water source(s) of this public water system, the Arizona Department of Environmental Quality (ADEQ) has given a high risk designation for the degree to which this public water system drinking water source(s) are protected. A designation of high risk indicates there may be additional source water protection measures which can be implemented on the local level. This does not imply that the source water is contaminated nor does it mean that contamination is imminent. Rather, it simply states that land use activities or hydrogeologic conditions exist that make the source water susceptible to possible future contamination. Further source water assessment documentation can be obtained by contacting ADEQ. ### **DEFINITIONS** **Treatment Technique (TT):** A required process intended to reduce the level of a contaminant in drinking water. **Level 1 Assessment:** A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria was present. **Level 2 Assessment:** A very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria was present. **Action Level (AL):** The concentration of a contaminant which, if exceeded, triggers treatment, or other requirements. **Maximum Contaminant Level (MCL):** The highest level of a contaminant that is allowed in drinking water. **Maximum Contaminant Level Goal MCLG):** The level of a contaminant in drinking water below which there is no known or expected risk to health. **Maximum Residual Disinfectant Level (MRDL):** The level of disinfectant added for water treatment that may not be exceeded at the consumer's tap. **Maximum Residual Disinfectant Level Goal (MRDLG):** The level of disinfectant added for treatment at which no known or anticipated adverse effect on health of persons would occur. **Minimum Reporting Limit (MRL):** The smallest measured concentration of a substance that can be reliably measured by a given analytical method. Millirems per year (MREM): A measure of radiation absorbed by the body. **Not Applicable (NA):** Sampling was not completed by regulation or was not required. **Not Detected (ND or <):** Not detectable at reporting limit. **Nephelometric Turbidity Units (NTU):** A measure of water clarity. Million fibers per liter (MFL) **Picocuries per liter (pCi/L):** Measure of the radioactivity in water **ppm:** Parts per million or Milligrams per liter (mg/L) **ppb:** Parts per billion or Micrograms per liter (µg/L) **ppt:** Parts per trillion or Nanograms per liter (ng/L) **ppq:** Parts per quadrillion or Picograms per liter (pg/L) $daq = 0001 \times maq$ ppb x 1000 = ppt ppt x 1000 = ppq 2020 FSTA INFORMACIÓN SORRE EL AGUA ES MUY IMPORTANTI AZ0414015 City of Somerton #### **CONTACT NAME AND TITLE** **PHONE NUMBER** Leo Lomeli / Water Plant Supervisor (928) 722-7322 #### **E-MAIL ADDRESS** leolomeli@somertonaz.gov We want our valued customers to be informed about their water quality. If you would like to learn more about public participation or to attend any of our regularly scheduled meetings, please contact **Sally Cavazos at 928-722-7322** for additional opportunity and meeting dates and times. ## **DRINKING WATER SOURCES** The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from human activity. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public **OUR WATER SOURCE COMES FROM 2 WEELS 300FEET DEEP** ## **DRINKING WATER CONTAMINANTS** Microbial Contaminants: Such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. **Inorganic Contaminants:** Such as salts and metals that can be naturallyoccurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. Pesticides and Herbicides: Such as agriculture, urban storm water runoff, and residential uses that may come from a variety of sources. Organic Chemical Contaminants: Such as synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and also may come from gas stations, urban storm water runoff, and septic Radioactive Contaminants: That can be naturally occurring or be the result of oil and gas production and mining activities. #### **WATER QUALITY DATA** - REGULATED CONTAMINANTS | Disinfectants | MCL
Violation
Y or N | Running
Annual Average
(RAA) | Range of All
Samples
(Low-High) | MRDL | MRDLG | Sample
Month
& Year | Likely Source of
Contamination | |-----------------------------------|----------------------------|---|---------------------------------------|------|-------|---------------------------|---| | Chlorine/Chloramine (ppm) | N | .0335 | 200 - 400 | 4 | 0 | Jan-Dec
2019 | Water additive used to
control microbes | | Disinfection By-Products | MCL
Violation
Y or N | Running Annual
Average (RAA)
OR Highest
Level Detected | Range of All
Samples
(Low-High) | MCL | MCLG | Sample
Month
& Year | Likely Source of
Contamination | | Haloacetic Acids (HAA5)(ppb) | N | 0.002 | | 60 | N/A | Qrtly
2019 | Byproduct of drinking
water disinfection | | Total Trihalomethanes (TTHM)(ppb) | N | 0.035 | | 80 | N/A | Qrtly
2019 | Byproduct of drinking
water disinfection | | Lead & Copper | Violation
Y or N | 90th Percentile | Samples
Exceeds AL | AL | ALG | Month
& Year | Contamination | |---|----------------------------|---|---------------------------------------|-----|------|---------------------------|--| | Copper (ppb) | N | 0.042 | 0 | 1.3 | 1.3 | July
2019 | Corrosion of household
plumbing systems; erosion
of natural deposits | | Lead (ppb) | N | 0.0000 | 0 | 15 | 0 | July
2019 | Corrosion of household
plumbing systems; erosion
of natural deposits | | Water Quality Data | | | | | | | | | Microbiological (RTCR) | TT
Violation
Y or N | Number of
Positive
Samples | Positive
Sample(s)
Month & Year | MCL | MCLG | Likely Sou | rce of Contamination | | E. Coli | N | 0 | 0 | 0 | 0 | human and fecal waste | | | Fecal Indicator (From GWR source) (Coliphage, enterococci and/or E. coli) | N | 0 | 0 | 0 | 0 | human and fecal waste | | | Inorganic Chemichals (IOC) | MCL
Violation
Y or N | Running Annual
Average (RAA)
OR Highest
Level Detected | Range of All
Samples
(Low-High) | MCL | MCLG | Sample
Month
& Year | Likely Source of
Contamination | | Antimony (ppb) | N | <1 | | 6 | 6 | May
2019 | Discharge from petroleum
refineries; fire retardants;
ceramics, electronics and
solder | | Arsenic ¹ (ppb) | N | 1.6 | | 10 | 0 | May
2019 | Erosion of natural
deposits, runoff from
orchards, runoff from glass
and electronics production
wastes | | Barium (ppm) | N | 0.06 | | 2 | 2 | May
2019 | Discharge of drilling
wastes; discharge from
metal refineries; Erosion of
natural deposits | | Beryllium (ppb) | N | <1 | | 4 | 4 | May
2019 | Discharge from metal
refineries and coal-burning
factories; discharge from
electrical, aerospace, and
defense industries | | Cadmium (ppb) | N | <0.5 | | 5 | 5 | May
2019 | Corrosion of galvanized
pipes; natural deposits;
metal refineries; runoff
from waste batteries and
paints | | Chromium (ppb) | N | <1 | | 100 | 100 | May
2019 | Discharge from steel and
pulp mills; Erosion of
natural deposits | | Cyanide (ppb) | N | <25 | | 200 | 200 | May
2019 | Discharge from steel/metal
factories; Discharge from
plastic and fertilizer
factories | | Fluoride (ppm) | N | 0.29 | | 4 | 4 | May
2019 | Erosion of natural
deposits; water additive
which promotes strong
teeth; discharge from
fertilizer and aluminum
factories | | Mercury (ppb) | N | <0.2 | | 2 | 2 | May
2019 | Erosion of natural
deposits; Discharge from
refineries and factories;
Runoff from landfills and
cropland. | | Nitrate (ppm) | N | <0.05 | | 10 | 10 | May
2019 | Runoff from fertilizer use;
leaching from septic tanks,
sewage; erosion of natural
deposits | | Selenium (ppb) | N | <5 | | 50 | 50 | Nov 13
2020 | Discharge from petroleum
and metal refineries;
erosion of natural
deposits; discharge from
mines | | Sodium (ppb) | N | 240 | | N/A | N/A | May
2019 | Erosion of natural deposits | | Thallium (ppb) | N | <1 | | 2 | 0.5 | May
2019 | Leaching from ore-
processing sites;
discharge from electronics,
glass, and drug factories | | • | | • • • • • | | - | | • | | |-------------------------------------|----------------------------|---|---------------------------------------|-----|------|---------------------------|--| | synthetic Organic Chemicals
SOC) | MCL
Violation
Y or N | Running Annual
Average (RAA)
OR Highest
Level Detected | Range of All
Samples
(Low-High) | MCL | MCLG | Sample
Month
& Year | Likely Source of
Contamination | | 4-D (ppb) | N | <0.1 | | 70 | 70 | Jul
2019 | Runoff from herbicide used
on row crops | | 4,5-TP (a.k.a. Silvex) (ppb) | N | <0.2 | | 50 | 50 | Jul
2019 | Residue of banned
herbicide | | achlor (ppb) | N | <0.1 | | 2 | 0 | Jul
2019 | Runoff from herbicide used
on row crops | | trazine (ppb) | N | <0.05 | | 3 | 3 | Jul
2019 | Runoff from herbicide used
on row crops | | enzo (a) pyrene (ppb) | N | <0.02 | | 200 | 0 | Jul
2019 | Leaching from linings of
water storagetanks and
distribution lines | | arbofuran (ppb) | N | <0.5 | | 40 | 40 | Jul
2019 | Leaching of soil furnigant
used on rice and alfalfa | | hlordane (ppb) | N | <0.1 | | 2 | 0 | Jul
2019 | Residue of banned
termiticide | | alapon (ppb) | N | <1 | | 200 | 200 | Jul
2019 | Runoff from herbicide used
on rights of way | | i (2-ethylhexyl) adipate (ppb) | N | <0.6 | | 400 | 400 | Jul
2019 | Discharge from chemical
factories | | i (2-ethylhexyl) phthalate (ppb) | N | <0.6 | | 6 | 0 | Jul
2019 | Discharge from rubber and
chemical factories | | Dibromochloropropane | N | <110 | | 200 | 0 | Jul
2019 | Discharge from rubber and
chemical factories | | Dinoseb (ppb) | N | <0.2 | | 7 | 0 | Jul
2019 | Discharge from rubber and
chemical factories | | Diquat (ppb) | N | <0.4 | | 6 | 0 | Jul
2019 | Discharge from rubber and
chemical factories | | Dioxin [a.k.a. 2,3,7,8-TCDD] (ppq) | N | <0.5 | | 6 | 0 | Aug
2019 | Discharge from rubber and
chemical factories | | Endothall (ppb) | N | <5 | | 6 | 0 | Aug
2019 | Discharge from rubber an
chemical factories | |-------------------------------------|----------------------------|---|---------------------------------------|-----|------|---------------------------|---| | Endrin (ppb) | N | <0.01 | | 6 | 0 | Aug
2019 | Discharge from rubber an
chemical factories | | Ethylene dibromide | N | <0.1 | | 6 | 0 | May
2019 | Discharge from rubber an
chemical factories | | Glyphosate (ppb) | N | <6 | | 6 | 0 | May
2019 | Discharge from rubber an
chemical factories | | Heptachlor (ppt) | N | <0.01 | | 6 | 0 | May
2019 | Discharge from rubber an
chemical factories | | Heptachlor epoxide (ppt) | N | <0.01 | | 6 | 0 | May
2019 | Discharge from rubber an
chemical factories | | Hexachlorobenzene (ppb) | N | <0.05 | | 1 | 0 | May
2019 | Discharge from metal
refineries and agricultural
chemical factories | | Lindane (ppb) | N | <0.01 | | 200 | 200 | May
2019 | Runoff/leaching from
insecticide used on cattle,
lumber, gardens | | Methoxychlor (ppb) | N | <0.05 | | 40 | 40 | May
2019 | Runoff/leaching from
insecticide used on fruit,
vegetables, alfalfa | | Oxamyl (a.k.a. Vydate) (ppb) | N | <0.5 | | 200 | 200 | May
2019 | Runoff/leaching from
insecticide used on apples
potatoes, and tomatoes | | Pentachlorophenol (ppb) | N | <0.04 | | 1 | 1 | May
2019 | Discharge from wood
preserving factories | | Picloram (ppb) | N | <0.1 | | 500 | 500 | May
2019 | herbicide runoff | | Simazine (ppb) | N | <0.05 | | 4 | 4 | May
2019 | herbicide runoff | | Toxaphene (ppb) | N | <0.5 | | 3 | 0 | May
2019 | Runoff/leaching from
insecticide used on cotton
and cattle | | Volatile Organic Chemicals
(VOC) | MCL
Violation
Y or N | Running Annual
Average (RAA)
OR Highest
Level Detected | Range of All
Samples
(Low-High) | MCL | MCLG | Sample
Month
& Year | Likely Source of
Contamination | | Benzene (ppb) | N | <0.5 | | 5 | 0 | May
2019 | Discharge from factories;
leaching from gas storage
tanis and landfills | | Carbon tetrachloride (ppb) | N | <0.5 | | 5 | 0 | May
2019 | Discharge from chemical
plants and other industrial
activities | | Chlorobenzene (ppb) | N | <0.5 | | 100 | 100 | May
2019 | Discharge from chemical
and agricultural chemical
factories | | o-Dichlorobenzene (ppb) | N | <0.5 | | 600 | 600 | May
2019 | Discharge from industrial
chemical factories | | p-Dichlorobenzene (ppb) | N | <0.5 | | 75 | 75 | May
2019 | Discharge from industrial
chemical factories | | 1,2-Dichloropane (ppb) | N | <0.5 | | 5 | 0 | May
2019 | Discharge from industrial
chemical factories | | 1,1-Dichloroethylene (ppb) | N | <0.5 | | 7 | 7 | May
2019 | Discharge from industrial
chemical factories | | cis-1,2-Dichloroethylene (ppb) | N | <0.5 | | 70 | 70 | May
2019 | Discharge from industrial
chemical factories | | trans-1,2-Dichloroethylene (ppb) | N | <0.5 | | 100 | 100 | May
2019 | Discharge from industrial
chemical factories | | Dichloromethane (ppb) | N | <0.5 | | 5 | 0 | May
2019 | Discharge from
pharmaceutical and
chemical factories | | 1,2-Dichloropropene (ppb) | N | <0.5 | | 5 | 0 | May
2019 | Discharge from industrial
chemical factories | | Ethylbenzene (ppb) | N | <0.5 | | 700 | 700 | May
2019 | Discharge from petroleum refineries | | Styrene (ppb) | N | <0.5 | | 100 | 100 | May
2019 | Discharge from rubber and
chemical factories; Leachin
from landfills | | Tetrachlorethylene (ppb) | N | <0.5 | | 5 | 0 | May
2019 | Discharge from factories
and dry cleaners | | 1,2,4-Trichlorobenzene (ppb) | N | <0.5 | | 70 | 70 | May
2019 | Discharge from textile-
finishing factories | | 1,1,1-Trichloroethane (ppb) | N | <0.5 | | 200 | 200 | May
2019 | Discharge from metal
degreasing sites and other
factories | | 1,1,2-Trichloroethane (ppb) | N | <0.5 | | 5 | 3 | May
2019 | Discharge from industrial
chemical factories | | Trichloroethylene (ppb) | N | <0.5 | | 5 | 0 | May
2019 | Discharge from metal
degreasing sites and other
factories | | Toluene (ppb) | N | <0.5 | | 1 | 1 | May
2019 | Discharge from petroleum factories | | Vinyl Chloride (ppb) | N | <0.3 | | 2 | 0 | May
2019 | Leaching from PVC piping
discharge from chemical
factories | | Xylenes (ppm) | N | <0.0005 | | 10 | 10 | May
2019 | Discharge from petroleur
or chemical factories | | | | | | | | | |